

FILE PLAN
2.0

ANALYTICAL RESULTS REPORT RICHARDSON FLAT TAILINGS SUMMIT COUNTY, UTAH

TDD R8-8508-07

EPA REGIONAL SITE PROJECT OFFICER: ERIC JOHNSON

E&E PROJECT OFFICER: SUSAN KENNEDY

REVIEWED BY KARL FORD

SUBMITTED TO: KEITH SCHWAB, FIT-DPO

WILLIAM GEISE, REM-FIT COORDINATOR

DATE SUBMITTED: OCTOBER 25, 1985

Rep. 13

LIST OF FIGURES

- FIGURE 1 GENERAL SITE LOCATION, RICHARDSON FLAT TAILINGS, UTAH
- FIGURE 2 SITE MAP AND SAMPLE LOCATIONS, RICHARDSON FLAT TAILINGS, UTAH

LIST OF TABLES

TABLE	1	ANALYTICAL METALS)	DATA	FOR	UNFILTERED GROUND WATER SAMPLES (TOTAL
TABLE	2 .	ANALYTICAL METALS)	DATA	FOR	FILTERED GROUND WATER SAMPLES (DISSOLVED
TABLE	3	ANALYTICAL	DATA	FOR	SURFACE WATER SAMPLES
TABLE	4	ANALYTICAL	DATA	FOR	SURFACE SOIL AND TAILINGS SAMPLES

TABLE 5 ANALYTICAL DATA FOR SUBSURFACE SOIL AND TAILINGS SAMPLES

TABLE OF CONTENTS

	P	AGE						
LISTS	OF TABLES AND FIGURES	i						
I.	INTRODUCTION	1						
II.	QUALITY ASSURANCE REVIEW	2						
III.	ANALYTICAL RESULTS AND CONCLUSIONS	2						
	A. GROUND WATER SAMPLES	2						
	B. SURFACE WATER SAMPLES	3						
	C. SOIL AND TAILINGS SAMPLES	5						
IV.	SUMMARY	6						
٧.	RECOMMENDATIONS	6						
REFER	RENCES	7						
	APPENDICES							
A. S	SITE INSPECTION REPORT							
B. R	RICHARDSON FLAT TAILINGS RAW DATA	. RICHARDSON FLAT TAILINGS RAW DATA						

ANALYTICAL RESULTS REPORT RICHARDSON FLAT TAILINGS SUMMIT COUNTY, UTAH

I. INTRODUCTION

This report was prepared to satisfy the requirements of Technical Directive Document (TDD) R8-8508-07, issued to Ecology and Environment, Inc., Field Investigation Team (E&E FIT) by the Region VIII Environmental Protection Agency (EPA).

The samples discussed in this report were collected by the FIT on June 19 and 20, and July 30 through August 2, 1985 from Richardson Flat Tailings near Park City, Utah (Figure 1). Two previous reports, the Report of Sampling Activities (R8-8505-27) and the Sampling Plan (R8-8504-23), present discussions regarding project objectives, site description, sampling procedures, quality control, sample documentation and field observations.

The sampling results discussed in this report consist of three ground water, six surface water, one surface soil, four surface tailings, two subsurface soil and four subsurface tailings samples collected during this investigation.

Richardson Flat Tailings is located in Summit County, Utah, approximately 3.5 miles northeast of Park City. The tailings cover approximately 160 acres in the NW 1/4, Section 1, Township 2 South, Range 4 East, and were piped from the Keetley Ontario Mine Shaft south of Park City. An ephemeral pond overlies the northeastern portion of the tailings, and is contained by a dam at the northwestern end. The site is currently owned by United Park City Mines Company (UPCM) who maintains six monitoring wells located near the base of the dam.

Ref. 13

II. QUALITY ASSURANCE REVIEW

All samples collected at Richardson Flat Tailings were low hazard, and were analyzed for Task 1 and 2 metals. In addition, surface water samples were analyzed for sulfate, and ground water samples were analyzed for sulfate and cyanide. Subsurface tailings samples were also analyzed for cyanide.

A triple volume surface water sample was collected at station RT-SW-6 for laboratory quality assurance. A duplicate ground water sample (RF-GW-4) was collected from station RF-GW-3 to check laboratory procedures, accuracy and precision.

A review of spike recovery and duplicate sample data was performed at EPA Region VIII Lab, and indicated the analytical procedures used were acceptable. Soil cyanide data were reviewed by E&E FIT chemists and were judged acceptable.

III. ANALYTICAL RESULTS

Analytical results for the 1985 sampling effort at Richardson Flat Tailings have been compiled in Tables 1, 2, 3, 4 and 5. Corresponding sample locations are illustrated in Figure 2. The raw data are attached as Appendix B.

A review of the analytical data allows the following observations and conclusions.

A. GROUND WATER SAMPLES

Upgradient ground water sample RF-GW-1 was collected from the newly installed monitoring well south of the tailings. Samples RF-GW-2 and RF-GW-3 were collected from UPCM monitoring wells located near the base of the dam. RF-GW-4 is a duplicate of sample RF-GW-3.

Ref 13

The ground water samples were analyzed for total metals, cyanide and sulfate, and dissolved metals. Ground water samples are generally analyzed for dissolved metals rather than total metals, but for purposes of comparison, both analyses were performed.

Total metals analyses of downgradient ground water samples (RF-GW-2, RF-GW-3 and RF-GW-4 averaged) revealed ten-fold increases in aluminum, antimony, arsenic, barium, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, silver, vanadium and zinc over the background ground water sample RF-GW-1. In contrast, dissolved metals analyses revealed elevated levels of arsenic, cobalt, iron, manganese and zinc using the same comparison. Only manganese, however, is present in higher concentrations than allowed by National Interim Primary drinking water standards (Table 1).

Total cyanide was found at a concentration of 200 ppb in downgradient sample RF-GW-2 as compared to non-detectable levels in the background sample RF-GW-1. However, a notation on the data sheet states the largest part of the RF-GW-2 value is due to an interference.

Based on these findings, an observed release of contaminants to the ground water can be scored according to the Mitre Model for Hazardous Waste Site Ranking using dissolved metals data. A drinking water well, used as a back-up source for Park City residents, is located two and a half miles from the contaminated wells at Richardson Flat Tailings. Hydrologic continuity between the drinking water well and the contaminated wells is unlikely, however, due to the prevailing direction of ground water movement through the unconsolidated deposits (Reference G).

B. SURFACE WATER SAMPLES

Surface water samples RT-SW-1, RT=SW-2 and RT-SW-3 were collected from the east bank of Silver Creek, and RT-SW-4, RT-SW-5 and RT-SW-6 were collected from the intermittent stream which flows through the tailings.

Paj:13

A comparison of the upgradient Silver Creek sample RT-SW-1 to downgradient samples RT-SW-2 and RT-SW-3 reveals concentrations of aluminum, antimony, arsenic, calcium, copper, iron, lead, manganese, mercury, and zinc are higher in the background sample (RT-SW-1) than the midstream sample (RT-SW-2). This is likely attributed to the Prospector Square Tailings which lie alongside Silver Creek less than two miles upstream of Richardson Flat.

Concentrations of the above constituents are relatively high in the background sample RT-SW-1 collected approximately one mile downstream of Prospector Square Tailings. Concentrations are lowest in sample RT-SW-2 collected one and a half miles downstream of Prospector Square Tailings and upgradient of Richardson Flat Tailings. Highest concentrations, however, are found in sample RT-SW-3, immediately downstream of Richardson Flat Tailings.

In spite of relatively high levels of Task 1 and 2 metals in the background sample RT-SW-1, a ten-fold increased concentration of lead was found in downgradient sample RT-SW-3 when compared with the background sample. In addition, a four fold increase of arsenic levels was found in RT-SW-3. Thus, the surface water data can be used as direct evidence of an observed release, as stipulated by HRS scoring guidelines.

Surface water from Silver Creek is diverted approximately 1,000 feet downstream of Richardson Flat Tailings, and is used to irrigate pasture land and hay fields. Silver Creek is not used as a drinking water source for human populations.

Analyses of surface water samples RT-SW-4, RT-SW-5 and RT-SW-6 collected from the intermittent on-site diversion ditch revealed elevated levels of aluminum, antimony, arsenic, barium, calcium lead, magnesium and sodium. Water in the diversion ditch flows to a marshy area located just west of the dam, and into Silver Creek directly upstream of RT-SW-3.

Ry. 13

C. SOIL AND TAILINGS SAMPLES

Analytical data for surface tailings samples (RT-SO-4, RT-SO-5, RT-SO-6 and RT-SO-7) reveal elevated concentrations of arsenic, cadmium, calcium, copper, lead, magnesium, mercury, silver, sodium and zinc, as compared to the off-site background soil sample (RT-SO-1). Elevated levels of the above constituents are typical in metal mine tailings, however, the off-site background soil sample contains substantially higher levels of arsenic, cadmium, lead, mercury and zinc as compared to mean concentrations for the Western United States (Table 4). Wind-blown tailings material is probably the primary source of contamination to nearby off-site surface soil. This idea is substantiated by comparison of the background surface soil sample data (RT-SO-1) to subsurface soil data (RF-SS-1, RF-SS-2). Most of the elemental constituents are elevated in the surface soil, but are greatly reduced in subsurface soil samples.

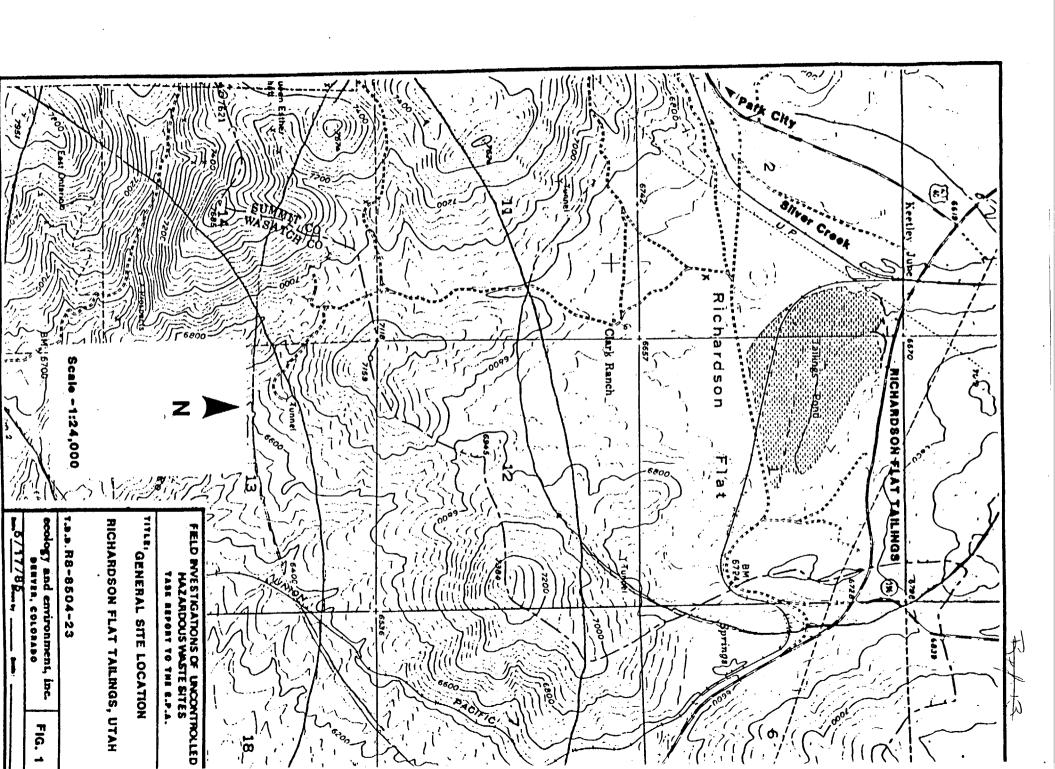
Data from subsurface tailings samples RF-SS-3, RF-SS-4 and RF-SS-5 indicate downward migration of antimony, arsenic, cadmium, copper, lead, magnesium, mercury, silver, sodium and zinc. As a result, soil beneath the tailings (RF-SS-6) contains elevated concentrations of all of the above constituents. Subsurface tailings data are presented in Table 5.

IV. SUMMARY

Although other upstream tailings or mining operations may be contributing inorganic contaminants to Silver Creek, a significant increase in surface water lead concentrations can be attributed to Richardson Flat Tailings. Water from Silver Creek is used for local irrigation.

A significant release of arsenic, cobalt, iron, manganese and zinc to downgradient ground water was demonstrated. However, hydrologic continuity between the contaminated aquifer and current

Ref 13


drinking water sources is unlikely. Any expansion of the Park City water supply should be thoroughly evaluated based on these findings.

Surface and subsurface tailings material contain high concentrations of heavy metals and arsenic. Subsurface tailings sample data indicate downward movement of contaminants in the solid matrix.

Elevated levels of metals and arsenic in nearby off-site soil may be attributed to wind-blown tailings from Richardson Flat.

V. RECOMMENDATIONS

- 1. An observed release of contaminants to the air route was scored based on photo-documentation of air-borne tailings material during collection of surface tailings sample (RT-SO-7). It is recommended that high-volume air sampling be conducted at the site to further substantiate and complete the HRS package.
- 2. Because the tailings material contains high concentrations of metals and arsenic, the area should be fenced to prevent on-site grazing by domestic sheep and cattle, and to keep people off the site.
- 3. Further surface water and sediment sampling is recommended to fully assess the hazard associated with irrigating area pasture land with water diverted directly downstream from Richardson Flat.

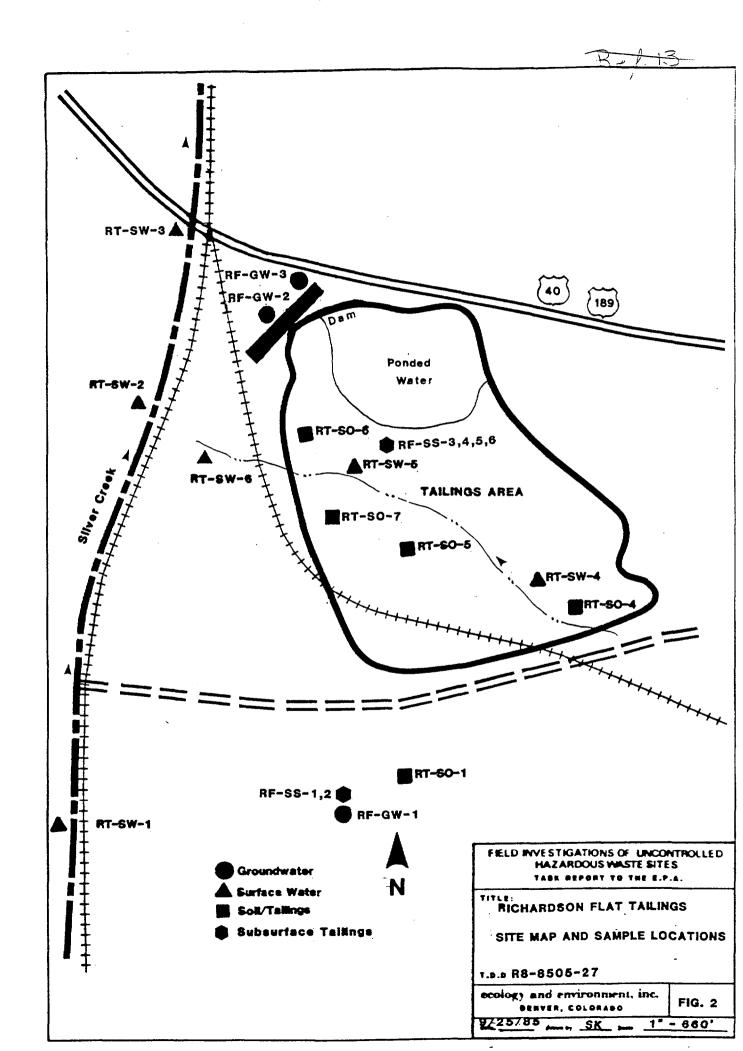


TABLE 1. ANALYTICAL DATA FOR UNFILTERED GROUND WATER SAMPLES COLLECTED AT RICHARDSON FLAT TAILINGS, UTAH. (Results in ug/l, ppb)

Parameter	Hole #1 RF-GW-1 Totals	UPCM #2 RF-GW-2 Totals	UPCM #1 RF-GW-3 Totals	UPCM #1 RF-GW-4 Totals	Drinking Water Criteria
TASK 1&2 METALS			00 700	83,400	5,000(c)
Aluminum	1,040	4,920	80,700	63,400 <5	146(b)
Antimony	` <5	63sc	<5 78	70	50(a)
Arsenic	<5	349sc			1,000(a)
Barium	83	2,665sc	1,534	1,354 <10	0.037(b)
8eryllium	<10	<10	<10 42	48	10(a)
Cadmium	<5	16		332	10(0)
Calcium*	45	314	352 98	104	50 (a.)
Chromium	<5	12	98 46	48	55(4.)
Cobalt	<5	80		1.350	1,000(b)
Copper	<5	190	1,583	130,000	700(d)
Iron	958	26,300	126,000 588	527	50(a)
Lead	<30	1,080	900 88	85	30(2)
Magnesium*	9.9	72		2,070	50(a)
Manganese	20	10,400	2,230	0.60	2.0(a)
Mercury	<0.1	0.1	0.70 88	82	13.4(b)
Nickel	<30	30	00	OL.	
Potassium	_		<5	<5	10(a)
Selenium	<5	<5	<5 <5	< 5	50(a)
Silver	. <5	17	44	: 44	(-/
Sodium*	16	54	<100	<100	13(b)
Thallium	<100	<100	100	100	
Tin		17	262	266	
Vanadium	<10		650	569	5,000(b)
Zinc	<5	2,790	030	303	-,,
TASK 3 METAL		200	<10	<10	200(c)
Cyanide	<10	200	110	110	
SPECIAL ANION Sulfate*	35	775	625	1,025	250,000(c)

*mg/1 or ppm

TABLE 2. ANALYTICAL DATA FOR FILTERED GROUND WATER SAMPLES COLLECTED AT RICHARDSON FLAT TAILINGS, UTAH.

(Results in ug/l, ppb)

Parameter	Hale #1 RF-GW-1 Dissolved	UPCM #2 RF-GW-2 Dissolved	UPCM #1 RF-GW-3 Dissolved	UPCM #1 RF-GW-4 Dissolved
TASK 1&2 METALS				
	/20	/20	/30	/30
Aluminum	<30	<30	<30	<30
Antimony	<5	< 5	<5 	<5
Arsenic	<5 20	<u>ب</u> 20	<5 104	9
Barium	78	99	104	104
Beryllium	<10	<10	<10	<10
Cadmium	· <5	<5	<5	<5
Calcium*	47	307	254	254
Chromium	<5	<5	<5	<5
Cobalt	<5	67	10	10
Copper	<5	<5	<5	<5
Iron	<10	14,800	376	300
Lead	<30	<30	<30	<30
Magnesium*	9.8	70	56	56
Manganese	11	9,990	924	903
Mercury	<0.1	<0.1	<0.1	<0.1
Nickel	<30	<30	<30	<30
Potassium				
Selenium	<5	<5	<5	<5
Silver	<5	<5	<5	<5
Sodium*	16	52	42	44
Thallium	<100	<100	<100	<100
Tin		.530	.4.4	.200
Vanadium	<10	<10	<10	<10
Zinc	6	144	< 5	< 5
	•		••	

TASK 3 METAL Cyanide

*mg/l or ppm

^

TABLE 3. ANALYTICAL DATA FOR SURFACE WATER COLLECTED AT RICHARDSON FLAT TAILINGS, UTAH. (Results in ug/1, ppb)

	Upstream SC	Midstream SC	Downstream SC	Southeast IS	Mid IS	West IS
Parameter	RT-SW-1	RT-SW-2	RT-SW-3	RT-SW-4	RT-SW-5	RT-SW-6
TASK 1&2 METALS	Total	Total	Total	Total	Total	Total
Aluminum	172	77	370	450	<30	35
Antimony	21	15	35	19	13	7
Arsenic	14	11	65	33	27	12
Barium	36	41	53	119	26	27
Beryllium	<10	<10	<10	<10	<10	<10
Cadmium	<5	₹5	<5	<5	<5	<5
Calcium	137,000	119.000	124,000	128,000	252,000	287,000
Chromium	<5	<5	<5	· <5	<5	<5
	< 5	\ 5	<5	<5	<5	<5
Cobalt	12	9	60	18	<5	<5
Copper	725	389	2,290	1.570	507	215
Iron	147	93	1,985	237	42	<30
Lead	22,200	24,000	26,000	35,400	55,400	59,200
Magnesium	764	434	727	602	1,654	2,566
Manganese	0.2	0.1	0.57	0.1	<0.1	<0.1
Mercury	<30	<30	<30	<30	<30	<30
Nickel	<30	. \30	100			
Potassium	<5	<5	<5	<5	<5	<5
Selenium '	\5 \5	\ 5	₹5	< 5	<5	<5
Silver		25,600	25,200	36,500	29,000	37,300
Sodium	31,700	<100	<100	<100	<100	<100
Thallium	<100	(100	1100	1200		
Tin	41.0	410	<10	<10	<10	<10
Vanadium	<10	<10	2,730	350	1,410	812
Zinc	2,690	1,650	2,730	330	2,	
SPECIAL ANION				21.0	963	909
Sulfate	284	222	210	218 50	40	33
Chloride	47	27	28	50	40	
рН	7.33	7.54	7.47	7.26	7.40	7.40 1,400
Conductivity**	600	600	550	700	1,200	21
Temperature °C	21	21	19	20	21	21

SC - Silver Creek
IS - Intermittent Stream
** - umhos/cm

TABLE 4. ANALYTICAL DATA FOR SURFACE SOIL AND TAILINGS SAMPLES COLLECTED AT RICHARDSON FLAT TAILINGS, UTAH.

(Results in ug/g, ppm)

Parameter	Background Soil RT-SO-1	Southeast Tailings RT-SO-4	Middle Tailings RT-SO-5	Northwest Tailings RT-SO-6	North Tailings RT-SO-7	Mean for Western US*
TASK 1&2 METALS Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	14,400 39 58 178 <1.6 17 8,200 24 11 94 24,000 1,110 4,990 879 0.59 12	3,440 <200 3,600 105 <1.9 47 45,600 6.9 227 30,700 3,320 14,600 1,650 1.70 59	863 <200 1,500 58 <1.4 40 49,500 15 2.3 181 19,900 2,650 15,300 1,810 2.61 5.2	794 <400 900 6.2 <1.8 80 16,900 7.8 <0.9 371 154,000 7,010 3,960 510 0.14 9.6	1,340 <300 600 27 <1.5 58 75,200 19 1.5 961 106,000 8,530 13,100 5,150 0.50 16	58,000 0.47 5.5 580 0.68 0.2 41 7.1 21 21,000 17 380 0.05 15
Potassium Selenium Silver Sodium Thallium	<16 6.7 1,020 <16	<20 20 3,470 <19	<300 19 2,960 <14	<400 24 3,280 <18	<300 22 2,280 <15	0.23 0.2 0.2
Tin Vanadium Zinc % Solids	37 1,570 97.4	9.1 6,360 95.8	3.5 5,400 96.9	4.8 5,870 90.6	6.5 3,780 93.7	70 55

^{*} Reference f

TABLE 5. ANALYTICAL DATA FOR SUBSURFACE SOIL AND TAILINGS SAMPLES COLLECTED AT RICHARDSON FLAT TAILINGS, UTAH.

(Results in ug/g, ppm)

Parameter	Soil 5-7' RF-SS-1	Soil 10-12' RF-SS-2	Oxidized Tailing RF-SS-3	Reduced Tailings RF-SS-4	Tailings/ Soil Contact RF-SS-5	Soil beneath Tailings RF-SS-6
TASK 1&2 METALS					1410	12 400
Aluminum	16,900	16,700	844	484	1410	12,400 14
Antimony	´ <1	<1	31	49	171	34
Arsenic	6.5	6.3	311	328	218	235
Barium	125	147	31	86	64	<2 <2
Beryllium	<2	<2	<2	<2	<2	15
Cadmium	6.8	7.4	53	169	61	9,200
Calcium	6,190	5,020	81,600	117,000	54,200	15
Chromium	19	19	6.3	16	14 4.5	16
Cobalt	8.7	9.5	<1	<1	335	105
Copper	14	17	225	225		15,100
Iron	18,500	19,700	80,800	68,000	22,600	1,090
Lead	37	37	2,770	4,720	4,920	4,530
Magnesium	6,240	7,620	11,100	12,900	13,300 1,630	1,220
Manganese	471	625	5,990	5,880	2.26	0.40
Mercury	<.05	<.05	0.94	1.97	∠.∠∪ <6	16
Nickel	21	22	/	<6	70	
Potassium			• •	41	9.4	1.3
Selenium	<1	<1	1.0	<1 13	26	6.9
Silver	<1 .	<u><1</u>	7.9		6,100	1,010
Sodium	308	279	2,230	11,300	<20	<20 `
Thallium	<20	<20	<20	<20	120	120
Tin				<2	. 5.4	30
Y an ad i um	31	28	3.1		12,700	1,510 .
Zinc	70	44	3,980	23,200 88.3	88.9	79.1
% Solids	79.2	77.4	86.4	50.3		,,,,
Task 3 Metal			40.4	5.2	<0.3	
Cyanide	<0.4	<0.4	<0.4	5.4	٠٠.5	

R4 13

REFERENCES

- (a) National Interim Primary Drinking Water Regulations. (EPA-570/9-76-003.) U.S. Environmental Protection Agency, Office of Drinking Water, 1976.
- (b) U.S. EPA Water Quality Criteria. 1980. Federal Register 45 (231): 203-220.
- (c) Safe Drinking Water Committee, 1982, Drinking Water and Health, National Academy Press, 4:166.
- (d) U.S. EPA, 1976, Quality Criteria for Water.
- (e) Clean Water Act, <u>Code of Federal Regulations</u> (Vol. 40, Parts 100 to 149), July 1, 1982.
- (f) Shacklette, J.T., and Boerngen, J.G.; 1984: Elemental Concentrations in Soil and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270. 105pp.
- (g) Baker, C.H., Jr.; 1970: Water Resources of the Heber-Kamas-Park City Area, North-Central Utah. U.S. Geological Survey Technical Publication No. 27. 79pp.

REFERENCE 14 M PHONE CALL DISCUSSION PIELD TRP CONFERENCE RECORD OF OTHER (SPECIFY) COMMUNICATION (801) 649-9321 (Record of Item checked above) TO: DATE Jennifer Harrington Susan Kennedy, (E&E) 9/4/85 Park City - Planning Div. 0930 SUBJECT Resident Population of Park City During Winter Months. SUMMARY OF COMMUNICATION Ms. Harrington provided the following information: - The permanent year-round population of Park City is 450C. - Although as many as 10,000 (permanent population plus number of guest beds) people may stay in town during five to ten days of the peak winter season, this additional population is transient. - No information is available of the average winter population including permanent and transient. When asked if the winter population is higher than summer population due to support workers at restaurants, hotels, etc., Ms. Harrington stated the change is insignificant because an equal number of summer residents spend the winter months elsewhere. CONCLUSIONS, ACTION TAKEN OF REQUIRED For HRS purposes, the population of Park City is 4500 which includes transient workers, but excludes travelers passing through the area.

INFORMATION COPIES

TO:

Reference 15

	RECORD OF COMMUNICATION	OTHER (SPECIFY)	LO TRIP CONFERENCE
TO:		(Record of Hem checked	
,		PROM: Junette & Spremen	DATE 09-02-87
	File	Annette Sackman, E & E	1300
SUSUECT			<u></u>
	Number of homes within one	mile of Richardson Flat Tailings	
SUMMARY	OF COMMUNICATION		
		igation activities in the Park City hin a one mile radius of Richardson	
			•
			•
		•	
	•		
		··	
CONCLUS	IONS, ACTION TAKEN OF REQUIRED		
		• 	
22.77.74.4			
INFORMA	ATION COPIES	and the second s	the second second second

EPA Form 1300-4 (7-72) REPLACES EPA NO FORM \$200-3 WHICH MAY BE USED UNTIL SUPPLY IS EXHAUSTED.

19750 belows